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ABSTRACT 

Grand Lake, Colorado has experienced a severe mountain pine beetle outbreak over the 

past twenty years. The aim of this study was to map lodgepole pine mortality and health 

decline due to mountain pine beetle. Multispectral data spanning a five-year period from 

2006 to 2011 were used to assess the progression from live, green trees to dead, gray-

brown trees. IKONOS data from 2011 were corrected to reflectance and validated against 

an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral dataset, also 

collected during 2011. These data were used along with additional reflectance-corrected 

multispectral datasets (IKONOS from 2007 and QuickBird from 2006 and 2009) to create 

vegetation classification maps using both library spectra and regions of interest. Two sets 

of classification maps were produced using Mixture-Tuned Matched Filtering. The 

results were assessed visually and mathematically. Through visual inspection of the 

classification maps, increasing lodgepole pine mortality over time was observed. The 

results were quantified using confusion matrices comparing the classification results of 

the AVIRIS classified data and the IKONOS and QuickBird classified data. The 

comparison showed that change could be seen over time, but due to the short time period 

of the data the change was not as significant as expected.   
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I. INTRODUCTION  

Mountain pine beetles (Dendroctonus ponderosae) and other infestation and 

stress situations have killed a considerable amount of forest on the North American 

continent over the last twenty years (Wulder et al., 2006). The changes effected by the 

mountain pine beetle present a number of questions related to forest ecosystems, 

economies and the environment. Benefits that forests provide, besides the obvious 

aesthetic pleasure, include; wood products, recreational opportunities, water shed control, 

carbon storage, temperature moderation, fostering habitats, and mitigating fire danger.   

In Colorado, forests and woodlands cover 9.87 million hectares of land surface, of which 

conifer forests are the most predominant (Colorado State Forest Service, 2011). Mountain 

pine beetle (MPB) outbreaks are cyclical, occurring over periods of warm, dry weather 

(White et al., 2005). There are natural predators of pine beetles, including woodpeckers 

and other insects, however, extreme cold temperatures resulting in a severe freeze are 

required to effectively kill off MPB (Leatherman et al., 2011). Since the current outbreak 

of mountain pine beetles erupted over twenty years ago in North America, forest 

landscapes across the continent have changed dramatically. In North America, 

specifically in Colorado, mountain pine beetles have been the most damaging forest pest. 

Since the first detection of infestation in 1996 (Associated Press, 2008), of 1.34 million 

hectares of Colorado’s pine forests have been impacted (Colorado State Forest Service, 

2011).  

Mountain pine beetles typically attack, “trees that are not growing vigorously due 

to old age, crowding, poor growing conditions, drought, fire or mechanical damage” 

(Leatherman et al.,  2011). Pine tree damage occurs coincidentally with the maturation of 

mountain pine beetles, usually over a one year period (Wulder et al., 2006). Trees 

affected by pine beetles go through a number of stages before they ultimately die: green 

healthy, green attacked, red/orange attack, and grey kill (Wulder et al., 2006). After only 

twelve months, 90 percent of killed trees will exhibit red needles. Three years after being 

attacked most trees will have shed all needles, considered grey kill. 
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Remote sensing data have been used to help track the changes of the forests, 

however; methods for detecting, mapping, tracking, and predicting degradation are not 

well developed or fully validated (DeRose et al., 2011; Meddens et al. 2011; Skakun et 

al., 2003; White et al., 2005; Wulder et al., 2006;). The goal of this study was to examine 

methods for detecting and monitoring spectral changes in vegetation using hyperspectral 

and multispectral data. This research used a time series of imagery of a specific problem 

area in Colorado to test mapping methods and to determine whether or not annual 

patterns exist. The research examined the feasibility and accuracy of using hyperspectral 

and multispectral data to find unique spectral signatures of coniferous trees at different 

stages of health, and to create a model showing past and current kill areas in Colorado’s 

montane forests.   
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II. BACKGROUND  

A. OVERVIEW OF MULTISPECTRAL AND HYPERSPECTRAL IMAGERY 

1. Remote Sensing 

Electro-optical remote sensing is the acquisition of imagery from an object 

without coming into physical contact with that object (Shaw & Burke, 2003). Data 

produced by aircraft or satellites can be used to observe a number of characteristics of the 

Earth’s surface. Through these data, specific features can be detected, painting a very 

unique picture of what materials exist in an area of interest (Schowengerdt, 2007). 

Remote sensing systems provide a valuable resource in Earth observation. By allowing 

for repeated coverage over an area, both human and natural events can be observed. With 

the advances and developments in remote sensing technology Earth observation today is 

easier than ever before. 

Today, aerial- and space-based remote sensors provide a significant resource for 

civil and military applications. With advances in camera and sensor technology, data 

provided by satellites and airborne vehicles have become much more sophisticated. 

Technology has improved immensely since the launch of the first Landsat Multispectral 

Scanner System (MSS) in 1972, which allowed acquisition of images at multiple 

wavelengths of the electromagnetic spectrum (Schowengerdt, 2007). Today, as with 

Landsat MSS before, these sensors require a natural source of electromagnetic radiation 

from the sun in order to produce imagery (Eismann, 2012). Known as passive remote 

sensing systems, these sensors measure the energy received after it has been reflected off 

the Earth’s surface (Fantle, 2010); see Figure 1. Data provided from remote sensing 

systems come in a variety of forms and data types. Two common types of data provided 

by these sensors are multispectral and hyperspectral images (see definitions below). 
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Figure 1.   Illustration of passive remote sensing system (From Fantle, 2010). 

2. Electromagnetic Spectrum 

Remote sensing systems use selected regions of the electromagnetic spectrum to 

create images. The electromagnetic spectrum can be broken into five distinct parts, 

excluding Radar, Gamma, etc.: visible from 0.4–0.7 µm (the portion of the EM spectrum 

that human eyes can see (Mattson, 2010)), near infrared from 0.7–1.2 µm, shortwave 

infrared from 1.2–3.0 µm, midwave infrared from 3.0–5.0 µm, and long wave infrared 

from 5.0–14.0 µm (Eismann, 2012); see Figure 2. Each region of the spectrum has unique 

characteristics that capture different characteristics of the surface. By placing bands at 

certain wavelengths along the spectrum, different materials and features can be detected, 

and potentially identified. Passive remote sensing systems such as multispectral and 

hyperspectral sensors use the visible and near infrared (VNIR) through shortwave 

infrared (SWIR) regions of the EM spectrum  
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Figure 2.   Electromagnetic spectrum (From AU Space Primer, 2002) 

3. Multispectral Imaging 

Spectral imaging refers to capturing an object at multiple wavelengths on the 

electromagnetic spectrum (Shaw & Burke, 2003). Combinations of bands are chosen at 

different spectral regions with the intent to detect spectral reflectance differences between 

materials of interest (Lillesand & Kiefer, 1994). A spectrum is the distribution of some 

measure of light power or material property with optical wavelength (Eismann, 2012). 

Based on how the material interacts with light, it is possible to detect the chemical 
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composition of the material (Eismann, 2012). Information about the surface composition 

is gathered by examining the intensity of the imagery in the selected bands (Eismann, 

2012). 

Once a scene is captured, a digital image is created with brightness values 

assigned to each pixel of the image. The images produced from each of the spectral bands 

are registered spatially by pixel to create an image that shows identical parts of the scene 

(Eismann, 2012); see Figure 3. In spectral imaging, sensors are spaced around the center 

of certain bands. Multispectral imaging typically uses the centers of the red (0.65µm), 

green (0.55µm), and blue (0.45µm) bands, but also makes use of the near infrared band at 

0.7µm. The near infrared band is very useful in vegetation studies, allowing for easy 

distinction between healthy and unhealthy vegetation. Vegetation “typically has a low 

reflectance in the visible spectral region because of strong absorption by chlorophylls, a 

relatively high reflectance in the near-infrared because of internal leaf scattering and no 

absorption” (Knipling, 1970). By setting the center of each band at a specific wavelength, 

different spectral characteristics can be detected (Figure 3). Knowing those spectral 

characteristics makes classification and thematic mapping possible. This type of analysis 

enables the breakdown of regions by surface type based on spectral content, or object 

detection based on those spectra. In multispectral imaging this is limited, however, due to 

the lack of full spectral information based on the number of spectral bands used (usually 

about 3 to 10) (Eismann, 2012). 
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Figure 3.   Multispectral image cube (From Jensen, 2005) 

4. Hyperspectral Imaging 

The use of multispectral image data for mapping materials and terrain is used 

frequently; however, due to the limited number of spectral bands, it is often difficult to 

accurately identify individual spectral features, and thus materials. Imaging spectrometry 

(hyperspectral imaging, HSI) developed from this need to fully characterize the 

signatures, to better understand the spectra collected from multispectral sensors, and to 

understand the causes of those signatures (Goetz, 2012). Defined as “the simultaneous 

acquisition of images in many narrow, contiguous spectral bands throughout the visible 

and solar reflected infrared portions of the spectrum,” imaging spectrometry enables 

more in depth analysis of materials in a scene (Goetz et al., 1985). This is accomplished 

through the use of narrower sensor spectral channels. Instead of channels being spaced 

something like 100nm apart, imaging spectrometry typically uses band spectral resolution 

and critical band spacing of approximately 10 nm (Goetz et al., 1985). The narrow 



 8 

spacing of the bands creates a finer spectrum, making individual features on each 

spectrum easier to identify (Figure 4). Hyperspectral imaging (HSI) uses the “same 

physical underpinning as the exploitation of multispectral imagery to extract scene 

information; in this case, however, the finer spectral sampling results in a greater wealth 

of information from which to ascertain the physical characteristics of the imaged objects” 

(Eismann, 2012).   

Hyperspectral remote sensing has become a fairly well established method for 

mapping the Earth’s surface. Hyperspectral imagery can be used in a number of fields 

and “its utility for ecological studies is virtually unlimited,” with many applications: 

forestry management, agricultural studies, mineral exploration, environmental 

monitoring, and national security (Ustin et al., 2004; Blakenship, 2006). 

 

Figure 4.   Comparison of multispectral image cube and hyperspectral image cube (From 
Short, 2007). 
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B. REMOTE SENSING SYSTEMS AND DATA 

1. Systems 

This study used multispectral commercial satellite imagery from DigitalGlobe’s 

QuickBird and GeoEye’s IKONOS satellites, and aerial imagery from NASA’s AVIRIS 

hyperspectral imaging system.   

a. IKONOS 

IKONOS (Figure 5) is the first commercial remote sensing satellite to 

produce sub-meter imagery. Launched in 1999 from Vandenberg Air Force Base, 

IKONOS is in a polar, sun-synchronous orbit with an altitude of 681 km. The sensor 

offers panchromatic and multispectral images with spatial resolutions of 0.82 m and 3.2 

m, respectively. IKONOS has five spectral bands: panchromatic, blue, green, red, and 

near infrared; with wavelengths spaced from 526 nm to 929 nm (0.526 µm to 0.920 µm) 

in the panchromatic bands, and 445 nm to 853 nm (0.445 µm to 0.853 µm) for the 

multispectral bands (GeoEye, 2012). It features a dynamic range of 11-bits per pixel, a 

swath width of 11.3 km, direct downlink to more than a dozen ground stations 

worldwide, and a revisit time of less than three days (GeoEye, 2012). 

 

Figure 5.   Artistic rendering of IKONOS satellite (From Satnews Daily, 2010). 
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b. QuickBird 

The QuickBird satellite was the first satellite launched by DigitalGlobe 

(DigitalGlobe, 2012) (Figure 6). Launched in 2001 from Vandenberg Air Force Base, 

QuickBird is in a polar, sun-synchronous orbit at an altitude of 482 km, with an expected 

gradual descent to 450 km (DigitalGlobe, 2012). At the time of launch QuickBird had the 

highest spatial resolution of any commercial remote sensing satellite with 0.65 m 

panchromatic spatial resolution and 2.62 m multispectral spatial resolution. The sensor 

has five spectral bands panchromatic, blue, green, red, and near infrared; with 

wavelengths spaced from 405 nm to 1053 nm (0.405 µm to 1.053 µm) in the 

panchromatic band, and 430 nm to 918 nm (0.430 µm to 0.918 µm) for the multispectral 

bands. QuickBird features a dynamic range of 11-bits per pixel, 128 Gb of onboard 

storage capacity, a swath width of 18 km at 482 km altitude and 16.8 km at 450 km 

altitude, and a revisit time of 2.5 days (DigitalGlobe, 2012). 

 

Figure 6.   Artistic rendering of QuickBird (From DigitalGlobe, 2012). 
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c. AVIRIS 

AVIRIS stands for “Airborne Visible/InfraRed Imaging Spectrometer” 

(Figure 7). This is a hyperspectral sensor, having 224 contiguous spectral bands with 

wavelengths from 380 nm to 2500 nm (0.38 µm to 2.5 µm). The sensor has been operated 

on four different aircraft platforms, NASA’s ER-2 jet, Twin Otter International’s 

turboprop, Scaled Composites’ Proteus, and NASA’s WB-57 (Jet Propulsion Laboratory 

2012). AVIRIS is flown at altitudes of 4 km to 20 km above sea level, with spatial 

resolutions ranging accordingly from 4 m to20 m. In addition at 4 km altitude the swath 

width is 2 km, while at 20 km altitude the swath width is 11 km (Jet Propulsion 

Laboratory 2012). AVIRIS uses three detectors, silicon (Si) for visible wavelengths, 

indium gallium arsenide (InGaAr) for near infrared wavelengths, and indium antimonide 

(InSb) for shortwave infrared wavelengths (Jet Propulsion Laboratory 2012). Processed 

AVIRIS data are approximately 140 Megabytes for every 512 scanlines of data, called a 

scene. Each scene corresponds to an area of about 10 km in length on the ground (Green 

et al., 1998; Jet Propulsion Laboratory 2012). 

 

Figure 7.   Artistic rendering of an AVIRIS flight onboard an ER-2 aircraft. The inset is a 
photo of the AVIRIS sensor (From Jet Propulsion Laboratory 2012). 
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2. Data  

Two IKONOS and two QuickBird scenes were used for this research, and one 

AVIRIS image was used for this analysis. The IKONOS scenes have 4-meter spatial 

resolution, while the QuickBird images have 2.4-meter spatial resolution; the AVIRIS 

scene has a spatial resolution of 8.9 meters. The dates of the scenes range from 2006 to 

2011. All of the scenes were acquired during summer months, from June to September 

(Table 1). 

 

 Sensor Scene ID Resolution 

2006 (Sept) QuickBird 06SEP04181407 2.4m 

2007 (Aug) IKONOS po_908079_0000000 3.7m 

2009 (July) QuickBird 09JUL07175737 2.4m 

2011 (June) IKONOS po_908081_0000001 3.7m 

2011 (Aug) AVIRIS f110807t01p00r06rdn 8.9m 

Table 1.   Collection sensor and date, and resolution of data used. 

C. OVERVIEW OF STUDY AREA AND PREVIOUS WORK 

1. Arapaho National Forest 

Arapaho National Forest is located in north central Colorado along the western 

edge of Rocky Mountain National Park, and the Continental Divide. The forest is home 

to varying species of trees, but is largely populated by lodgepole pine (Pinus contorta) 

(Bobbe et al., 1994). Comprising 292,889 hectares, the landscape is dominated by the 

Rocky Mountains, parts of the Colorado River and South Plate River, and multiple 

reservoirs (United States Forest Service, 2007). Lodgepole pine grows in abundance in 

this area, preferring the high altitudes and moderate temperatures that are provided. For 

approximately the past thirty years the trees have been under attack by mountain pine 

beetle, having been largely decimated from sustained attacks by the insect (Hartman, 
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2008). This is especially evident in the area around Lake Granby in Grand County 

Colorado, where it is barely evident that mature lodgepole pine once inhabited the area.   

When major logging operations ceased in the area over eighty years ago, 

lodgepole pines were allowed to grow unencumbered; additionally major fire suppression 

in the area has aided in the ascendance of these trees (Colorado State Forest Service 

2006). This made the (monoculture) trees that populated the area decades later perfect 

hosts for mountain pine beetle (Madrigal, 2007). The impact has been severe, creating 

economic, environmental and recreational issues throughout the area. As the trees dry out 

and eventually die, fuel for forest fires is in abundant supply (Jenkins et al., 2012). Water 

supplies are in danger also, as a lack of soil cover “could leave reservoirs and rivers 

clogged with sediment” (Hartman, 2008). In addition, backpackers, campers, and skiers 

are in danger of being hit by falling trees. Mountain economies are hurt as well, as the 

brown backdrop is a less than appealing sight. 

The area of interest for this study was the area on the north side of Lake Granby 

known as Green Ridge (Figure 8). This site has been dramatically affected by mountain 

pine beetle, which optimized the probability of obtaining useful remote sensing results.   
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Figure 8.   Lake Granby and Arapaho National Forest Area (From National Park Service) 

2. Mountain Pine Beetle 

Mountain pine beetle move through mature tree stands, killing those trees that 

have stopped growing “due to old age,” trees that are overcrowded, those living in poor 

growing conditions, or have been affected by drought, fire or mechanical damage, or 

have root disease (Leatherman, 2011). These insects have changed forest landscapes 

across western North America over the past twenty years (Romme et al., 1986); see 

Figure 9. Killing thousands of hectares of pine trees from British Columbia to northern 

Mexico, mountain pine beetles are an extremely menacing pest (Wulder et al., 2006). 

Pine beetle kill is most severe during long periods of warm, dry weather. Since 2002, a 

period when temperatures have been favorable across North America, pine beetle 

populations have risen dramatically (White et al., 2005). 
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Figure 9.   Mountain pine beetle kill across North America (From Amman et al., 2002). 

Attacking in the late summer, female beetles (Figure 10) lay eggs in tunnels just 

beneath the tree’s bark. Once the eggs have hatched, beetle larvae (Figure 11) scatter, 

spreading blue stain fungi which assist in killing pine trees (Leatherman, 2011). As 

beetles bore into a tree, two types of blue stain fungi (Ophiostoma clavigerum and 

Ophiostoma montium) are inoculated into the tree. These fungi attack living cells in the 

phloem and xylem causing the tree to stop producing resin (Wulder et al., 2006). 

Additionally, healthy trees may be overcome by beetles attacking in large numbers, 

termed “mass attack” (Wulder et al., 2006). In either of these circumstances tree’s 

defenses are overcome, resulting in the death of the host tree. Although these insects have 

short life cycles, living only one year, the damage caused is severe. All pine tree species 

are suitable hosts for mountain pine beetle, but lodgepole pine seems to be the most 

“severely impacted,” making these trees the primary host for the insect (Wulder et al., 
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2006). Because of the relatively large population of lodgepole pine in Colorado, and 

favorable climate over the last decade, mountain pine beetles have flourished. 

 

Figure 10.   Top view of full grown mountain pine beetle (actual size 1/8 to 1/3 inch) (From 
Leatherman, 2011). 
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Figure 11.   Mountain pine beetle larva (actual size 1/8 to 1/4 inch) (From Leatherman, 2011). 

3. Previous Work 

There has been an extensive amount of previous work on mapping lodgepole pine 

degradation due to mountain pine beetle (Skakun et al., 2003; White et al., 2005; DeRose 

et al., 2011). Skakun et al. used a Tasseled Cap Transformation (TCT) of Landsat-7 

ETM+ to obtain wetness indices, which were then used to create an enhanced wetness 

difference index used to determine patterns in tree stands with known red-attack damage. 

They determined that sites with larger numbers of red attack trees generated stronger 



 18 

patterns of red-attack reflectance, those sites having between 30 and 50 trees at red-attack 

level. Sites with fewer trees in red-attack stage were classified less accurately, due to a 

smaller number of red crowns, and increased variance due to understory and healthy 

canopy reflectance factors (Skakun et al., 2003). 

Meddens et al. evaluated the classification accuracy of 30 cm spatial resolution 

multispectral imagery, which was aggregated to coarser resolutions, to assess forest 

degradation in central Colorado; just south of the area observed for this study. Using 

Normalized Difference Vegetation Index (NDVI) and Red-Green Index (RGI), results 

were mapped using a maximum likelihood classifier. Using the 30 cm imagery 

classification, results were mapped with 87 percent accuracy; but they found that using 

2.4-meter spatial resolution imagery the classification accuracy was 90 percent. This 

difference was attributed to pixels including “more shadow in forested regions than pixels 

in finer resolution imagery, thereby reducing forest canopy reflectance and allowing 

improved separation between forest and non-forest classes” (Meddens et al., 2011). 

Additionally, they found that the 2.4 meter spatial resolution imagery was approximately 

the size of a tree crown. Ultimately the study showed that using multispectral imagery 

with spatial resolution of 2.4 meters was best for mapping tree mortality, and that 

“multispectral imagery can be used to separate multiple post outbreak attack stages (i.e., 

red-attack and gray-attack) from other classes in the image” (Meddens et al., 2011). 

White et al. used aerial imagery of six one-hectare sites in British Columbia. They 

determined that the aerial imagery was acceptable for use as ground truth with 

classification accuracy of 99.5 percent. The aerial imagery was then used to validate an 

unsupervised classification of IKONOS 4-m MSI data. The results showed that red-

attacked trees in areas with low-density attack were classified with 54 percent accuracy; 

while red-attacked trees in areas with medium-density attack were classified with 

78 percent accuracy (White et al., 2005). 

There is also a wealth of information already available for hyperspectral sensing 

of forest damage. A study by White et al. used Hyperion data to detect the “relationship 

between spectral moisture indices and levels of red attack damage” (White, et al., 2007). 

Moisture indices were generated from the Hyperion data and then compared to the 
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amount of red attack damage detected in each Hyperion pixel. The results showed that 

there was good correlation between the Moisture Stress index and the level of red attack 

damage. The study also showed that it was possible to detect low levels of mountain pine 

beetle red attack damage over large areas using Hyperion that Landsat does not always 

detect. 

Kumar et al. (2012) used airborne multispectral and hyperspectral data to detect 

potentially diseased trees over a large area by examining unique spectral signatures. This 

study used two sets of HSI data from 2007 and 2009, and one MSI dataset from 2009 to 

map the spread of infection amongst citrus trees in Florida. Through extensive ground 

truthing to validate the results of the images, and use the use of an image derived spectral 

library they found that Mixture-Tuned Matched Filtering yielded the greatest accuracy 

for the mapping results. 

The goal of this study was to successfully map the degradation of lodgepole pine 

trees over time, principally using multispectral data (IKONOS and QuickBird). Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS) data were classified using a Mixture-

Tuned Matched Filtering approach to produce classification maps utilizing spectral 

library plots and regions of interest (ROI), to show the degradation of the forest through 

the years from 2006–2011. Previous studies focused primarily on using one type of data, 

either MSI or HSI. This study extended the previous work done by showing that through 

the use of both HSI and MSI data change caused by mountain pine beetle over time could 

be detected. 
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III.  METHODS 

A. DATA PROCESSING 

1.  Spatial Adjustments 

 The QuickBird and AVIRIS images were spatially resized using nearest neighbor 

resampling to match the IKONOS resolution of 3.7 m for easier comparison between the 

data sets. Once these images were resized, image chips of the multispectral and 

hyperspectral images were created where overlapping areas between all images existed. 

This was done in order to limit the size of the data to be classified, to allow direct 

comparison, and to make processing times faster. Once these steps were completed, 

atmospheric corrections were applied to all of the images. 

2.  Atmospheric Corrections 

Remote sensing images need to be atmospherically corrected in order to remove 

the effects of the Earth’s atmosphere. The radiation that returns to a sensor from the 

Earth’s surface changes due to “atmospheric effects caused by molecular and particulate 

scattering and absorption” (Matthew et al., 2002). Because of these effects it is difficult 

to compare uncorrected data sets over time. Additionally true reflectance values cannot 

be obtained without atmospheric correction (Hadjimitsis et al., 2010). For this study, the 

Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) was used. 

FLAASH is an atmospheric correction model derived from “‘physics-based’ mathematics 

from MODTRAN4” (Cooley et al., 2002). Developed by the Air Force Research 

Laboratory, Space Vehicles Directorate, Hanscom AFB and Spectral Sciences, Inc. 

FLAASH was designed to support analyses of visible-to-shortwave infrared 

hyperspectral and multispectral imaging sensors (Cooley et al., 2002). FLAASH takes 

properties from the atmosphere and inverts those properties from ‘radiance-at-detector’ to 

‘reflectance-at-surface’ (Cooley et al., 2002). To make the correction, a radiance image is 

needed with center coordinates, sensor altitude, ground elevation, pixel size, time and 

date the image was captured. FLAASH uses standard MODTRAN atmospheric models, 

which are based on surface air temperature, water vapor, and latitude and longitude. 
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3.  Empirical Line Correction 

The data analyzed for this study covered a number of years, and unfortunately, 

while collected during the same season (summer), were collected in different months. 

Reflectance values in a single image can vary significantly from target to target based on 

environmental and observational parameters (Smith & Milton, 1999). While the goal of 

the atmospheric corrections applied to these data was to produce absolute reflectance that 

could be compared year-to-year, comparison of FLAASH reflectance spectra for selected 

(what should be relatively invariant) targets over time again demonstrated significant 

differences. It was assumed that the reflectance characteristics for these targets should be 

similar from year-to-year, thus an empirical method was used to accomplish this and 

gains and offsets were determined to adjust the rest of the data. The so-called “empirical 

line correction” is a technique for normalizing the reflectance from image to image 

(Roberts et al., 1986; Gao et al., 2006). This approach requires that at least two targets 

(usually a bright target and a dark target) be identified and a reference spectrum be 

measured for each, and then compared to the corresponding data spectrum to determine a 

linear regression between the two. The result is a set of gains and offsets converting the 

data spectrum to match the reference spectrum. As used in this research, the 2011 

FLAASH-corrected AVIRIS data were used to derive the reference spectra and the 2011 

FLAASH-corrected IKONOS spectra were used as the data spectra. In this case, two 

regions of interest were used (a white roof and an asphalt road), the reflectances for the 

targets were compared between each of the images and then normalized as above in order 

to create images with more uniform reflectance (Smith & Milton, 1999). Once the 

IKONOS reflectance values were matched with the AVIRIS reflectance, the other three 

MSI images were empirically corrected using a similar approach. 

4.  Registration 

Image to image registration is needed when multiple scenes over the same area 

are being analyzed for change. Through image to image registration a pixel by pixel 

comparison is possible (From Richards & Jia, 2005).   Ground control points (GCPs) 

were manually selected across all of the images. GCPs are common points corresponding 
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to common ground features spread across the images, which allow the images to be 

registered. A higher number of GCPs typically results in a more accurate registration, 

depending on the warp method selected (Richards & Jia, 2005). Once GCPs were 

collected, the images from 2007, 2009, and 2011 were warped to the QuickBird image 

from 2006 using first degree polynomial warping and nearest neighbor resampling; 

additionally, the HSI image from 2011 was warped to the 2006 image.   

Polynomial image warping is “where the source image coordinates are defined as 

bivariate polynomials in the destination images coordinates,” this is common in remote 

sensing for image registration and to correct distortions in images (Gustafsson, 1993). 

Nearest neighbor resampling applies the “pixel that has its center nearest the point 

located in the image,” and is then “transferred to corresponding display grid location” 

(Richards & Jia, 2005) (Figure 12). Use of nearest neighbor resampling is desirable for 

spectral analysis applications to avoid changing/biasing the pixel signatures. 

 

Figure 12.   Illustration of nearest neighbor resampling (From Richards & Jia, 2005). 

Using the September 2006 QuickBird image as the base image (Figure 13), the 

other four images, July 2009 from QuickBird, 2007 and 2011 from IKONOS, and 2011 

from AVIRIS, were warped using first degree polynomial warping and nearest neighbor 

resampling (Figures 14 & Figure 15). GCPs were collected throughout the 2007, 2009, 

and the MSI and HSI 2011 images, and were used to warp to match the image from 2006. 

This results in a warped file and an estimate of root mean square (RMS) error. RMS error 
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is an overall estimate of the accuracy of the mapping, computed by taking the root mean 

square of all the residuals in both easting and northing directions (Richards & Jia, 2005). 

For the MSI scenes, common features were easier to identify, and more GCPs were 

found. Between the QuickBird 2006 image and the IKONOS 2007 image 16 GCPs were 

used, which led to a RMS error of 0.024 pixels.  19 GCPs were used to warp the 2006 

and 2009 QuickBird scenes, giving a RMS error of 0.007 pixels. Between the 2006 

QuickBird and 2011 IKONOS 17 GCPs were used and a RMS error of 0.056 pixels was 

the result. Finally, between the 2006 QuickBird and the 2011 AVIRIS scenes 12 GCPs 

were used, this resulted in a RMS error of 0.18 pixels. Based on the low RMS error for 

all the images the registrations were acceptable. 

 

Figure 13.   Spatially adjusted, atmospherically and empirically corrected QuickBird 
September 2006. Image size is 5.952 km by 2.62 km. 
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Figure 14.   Spatially adjusted, atmospherically corrected, and registered MSI images of study 

area. Progressing downward, the images are August 2007 IKONOS, July 2009 
QuickBird, and June 2011 IKONOS. Image size is 5.952 km by 2.62 km. 



 26 

 
 

Figure 15.   Spatially adjusted, atmospherically and empirically corrected, and registered 
AVIRIS image of study area from 2011. Image size is 5.952 km by 2.62 km. 

5.  Band Masks  

The site chosen for this study has an abundance of water (Lake Granby, 

Colorado). Areas with more tree coverage and less water would obviously be preferable, 

but due to the limited availability of overlapping data this site was the most usable. In 

order to negate the influence of the water, band masks were created from regions of 

interest (ROI) from the 2011 AVIRIS true color image that masked the water out of the 

scenes and allowed for more accurate results. The data were also masked to exclude 

green vegetation that was clearly “not trees”; a band mask was created for green grass, 

also done by selecting ROIs that covered those areas in the true color image. 

6.  Spectral Analysis 

Once these processes were completed, the data were analyzed using an approach 

based on reduction of spectral and spatial dimensionality and linear spectral mixing using 

image or spectral library spectra (Boardman & Kruse, 2011). The “Spectral Hourglass” is 

a multi-step process that can be applied to either hyperspectral or multispectral data and 

includes everything from atmospherically correcting data to producing classified image 

results (Figure 15). Using this approach allowed for “consistent ways to extract spectral 
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information from hyperspectral data without a priori knowledge or requiring ground 

observations” (Kruse & Perry, 2009). 

 

Figure 16.   Spectral hourglass method for processing and classifying data (From Boardman & 
Kruse, 2011). 

The approach typically uses the data themselves to find and map image spectral 

endmembers, those unique spectral signatures that define the components of an image. 

This is accomplished by first reducing the spatial size of the input imagery of the spectral 

data through the minimum noise fraction (MNF). The MNF is a transform of the spectral 

data that is used to determine the inherent dimensionality of the data to segregate noise 

(Green et al., 1988; Boardman & Kruse, 2011). MNF is similar to Principal Components 

Analysis (PCA), however, rather than a linear transformation that orders the output data 

by variance, MNF orders the data based on signal-to-noise ratio (SNR), the highest SNR 

showing in the first tens of bands (Boardman & Kruse, 2011). For this study, thirty out of 

a possible 205 MNF bands of AVIRIS data were used and all four bands of the MSI data 

were used. The number of useful bands was determined based on Eigenvalue plots, which 

relate the higher Eigenvalue numbers to bands with higher SNR (Boardman & Kruse, 

2011). 

After determining the number of spectral bands to use for analysis, endmembers 

can be derived from the imagery or they may be selected from user supplied image ROIs 
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or spectral libraries. This study used both a spectral library and ROIs. The spectral library 

of nine averaged known endmembers consisted of young green trees, two stages of green 

healthy trees, green infected trees, partially infected trees with green and red needles, 

three stages of red beetle kill trees, and trees with beetle kill with gray bark (Figure 16). 

These spectra show features commonly found in healthy and unhealthy lodgepole pine 

trees. The spectral library was resampled to match the wavelengths and values of both the 

HSI and MSI images and classification was performed (see below).  

 

Figure 17.   Spectral library of averaged endmembers of tree degradation from young green to 
beetle kill with gray bark (Kruse 2008, unpublished data). 
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In addition to the spectral-library-based method, the image ROI approach was 

used with three ROIs created by examining the spectral signatures of pixels within the 

AVIRIS data; green healthy, red kill, and gray kill. Because all the data sets were 

coregistered, the ROIs found in the AVIRIS data matched the multispectral data. AVIRIS 

data were found to be the most logical to extract ROIs from based on the higher spectral 

resolution. 

Based on the goal of finding pixels matching ROI or library spectral signatures 

for lodgepole pine trees at different stages of health, Mixture-Tuned Matched Filtering 

(MTMF) was selected for spectral mapping of these data. Other classification methods 

(maximum likelihood, Mahalanobis distance) were tested and rejected for this research 

because the MTMF approach appeared to be most sensitive to the vegetation differences. 

MTMF is a “partial linear unmixing used to spectrally unmix the data and to accurately 

map the apparent abundance of a known target material in the presence of a composite 

background” (Boardman & Kruse, 2011). HSI is used for a variety of mapping 

applications, but the pixels in HSI scenes are often spectrally mixed. Spectral mixing is 

the mixing of different materials within a single pixel (Boardman & Kruse, 2011). In 

order to find the purest endmembers in a scene the pixels then need to be unmixed. To 

unmix the data it is necessary to calculate the fractional abundance of each endmember of 

each pixel in the scene based on the known endmembers and the scene spectra 

(Boardman & Kruse, 2011). Known endmembers come from analysts’ knowledge of an 

area in a scene, or from spectral libraries of specific endmembers (Boardman & Kruse, 

2011). 

   In order to create the MTMF results the algorithm uses a matched filter (MF) to 

maximize the response of the known endmember and suppresses the response of the 

composite background (the covariance of all other endmembers), thus matching the 

known signature. MF was designed for target signal detection, and has been called the 

“optimal linear detection method for locating a known signature in the presence of a 

mixed and unknown background” (Boardman & Kruse, 2011). The MF uses the 

calculation of linear operator or projection vector to balance target detection and 

background suppression (Boardman & Kruse, 2011). The target that is distinguishable 
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from the background is heavily weighted against the background, and the portion of the 

target that is indistinguishable from the background is suppressed, allowing for 

identification of target materials (Boardman & Kruse, 2011); see Figure 17. 

 

Figure 18.   Illustration of MTMF concept (From Boardman and Kruse, 2011). 

This technique was useful for the purposes of this study because it required no 

knowledge of the area or the endmembers, and the resulting output is easily explainable 

by physical processes of materials as illustrated by their spectra. The background values 

of the MF images will be lower than the known endmembers, and appear as darker pixels 

in the MF images as seen in Figure 18. Additionally, the MTMF process creates 

infeasibility images that are used to reduce the number of false positives that can occur 

when only using MF images. The infeasibility results display pixels that contain the 

target material and the background in terms of noise standard deviations. The lower the 

infeasibility score, the higher the probability that the material is a feasible mixture of the 

target spectrum and the background materials (Boardman & Kruse, 2011). 
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IV. RESULTS 

A. SPECTRAL MAPPING RESULTS 

MTMF results provide “high-performance subpixel target detection and extreme 

false alarm rejection,” making MTMF a very reliable method of spectral mapping 

(Boardman & Kruse, 2011). Because MTMF is using two sets of information (the MF 

score and the Infeasibility), the final result shows whether a pixel is a feasible mixture of 

the target and background, and the estimated abundance of the target occurring in that 

pixel (Boardman & Kruse, 2011). The MTMF approach was first applied using the 

spectral library endmembers, and then separately using the image ROI endmembers for 

comparison. Only the most feasible, best MF matches are shown in the results images. 

1. Matched Filter (MF) Score Results 

Two sets of MF results were generated as part of the MTMF processing using the 

aforementioned spectral library and image ROIs. Separate MF images for each of the 

nine library spectra and the three ROIs were produced for all five data sets. The MF score 

images show areas with higher MF scores as brighter pixels, pointing to areas with large 

abundance where the target material likely occurs. Figure 19 shows the MF image created 

by comparing the library spectrum of young green lodgepole pine to the pixel spectra of 

the QuickBird image from September 2006. The brighter areas suggest young green 

lodgepole pine trees inhabit those pixels. Based on examination and comparison with 

true-color imagery, however, areas with the brightest pixels do not appear to all be young 

tree growth; rather many of these are green grassy areas. This occurred because the 

spectra for green grass and young green lodgepole pine are very similar; these areas were 

masked from further analysis. Figure 20 shows the MF image created by comparing the 

image ROI average spectrum for green healthy trees to the pixel spectra. The differences 

between the images derived using the two different sources of endmember spectra are 

clear. Many more pixels were considered green healthy, brighter, in the ROI MF image. 

However, there is still confusion in the ROI MF image in the grassy areas. 
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Figure 19.   MF score of young green lodgepole pine trees from September 2006 QuickBird 
data created by comparing image pixels to library spectra. Image size  is 5.952 km 
by 2.62 km. 

 
Figure 20.   MF Score of green healthy lodgepole pine trees from September 2006 QuickBird 

data created by comparing image pixels to regions of interest. Image size is 5.952 
km by 2.62 km. 

2. Infeasibility Results 

MTMF infeasibility images help to remove false positive pixels, those pixels that 

had high MF scores but are unlikely to be the target material based on the mixture of the 

target spectrum and the background distribution (Boardman & Kruse, 2011). Infeasibility 

images corresponding to the MF score images were created for each data set. The 
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infeasibility images from the 2006 QuickBird data, created by comparing both spectral 

library plots and ROIs to spectrum from image pixels (Figure 21 & Figure 22), show that 

the brighter areas in the MF score image are not necessarily young lodgepole pine trees, 

but many are rather false positives in the MF score image.  

 

Figure 21.   Infeasibility image of young green lodgepole pine trees from September 2006 
QuickBird data created by comparing image pixels to library spectra. Image size 
is 5.952 km by 2.62 km. 

 

 
Figure 22.   Infeasibility image of green healthy lodgepole pine trees from September 2006 

QuickBird data created by comparing image pixels to regions of interest. Image 
size is 5.952 km by 2.62 km. 



 34 

Visual examination of the MF score and infeasibility images together can be used 

to show where young green lodgepole growth (if any) occurred. More typically, however, 

an interactive process performed using 2D scatterplots is used to discriminate these areas 

(Figure 23) (Boardman & Kruse, 2011). The 2D scatterplot plots MF score against 

infeasibility. Pixels with high MF scores and low infeasibility (pixels colored green) are 

in the lower right corner of the scatterplot. These pixels represent the most likely areas of 

young green lodgepole pine tree growth in the September 2006 QuickBird image (Figure 

24). 

 

Figure 23.   2D scatterplot of young green lodgepole pine with MF score along the x-axis and 
infeasibility along the y-axis. Green pixels represent the highest MF score and 
lowest infeasibility in the September 2006 QuickBird using library endmembers. 
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Figure 24.   Green pixels from the 2D scatterplot overlaid on MF score image from September 

2006 QuickBird data. Green pixels represent areas were likely young green 
lodgepole pine trees exist. Image size is 5.952 km by 2.62 km. 

3. MTMF Ratio Results 

MTMF/Infeasibility ratioing is an approach that can be used to automate the 

MTMF analysis in a consistent fashion for multiple images. The MTMF ratio images 

highlight pixels most likely to contain the target material. This approach has been 

successfully used for analysis of imaging spectrometer data for mineralogy (Kruse et al., 

2011). The MTMF Ratio results for this research were created by dividing the MF score 

images by their corresponding infeasibility images. Figure 25 shows an example of the 

MTMF ratio for the library spectra to image pixel spectra comparison, from the 

September 2006 QuickBird data. The resulting MTMF Ratio image shows areas with 

high abundance of young green lodgepole pine trees as brighter pixels, while suppressing 

the pixels that were classified falsely as young green lodgepole pine. There is still minor 

confusion among the grassy areas that were not masked in this image, but much of what 

was falsely classified as young green lodgepole pine in the MF score image has now been 

correctly suppressed. 
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Figure 25.   MTMF ratio image of young green lodgepole pine trees from September 2006 
QuickBird data created by comparing library spectra to image pixels. Image size 
is 5.952 km by 2.62 km. 

Figure 26 shows the MTMF ratio result created by comparing the three ROIs to 

image pixel spectra. The differences between the classifications using the two difference 

endmember sources are fairly obvious. The ROI MTMF ratio image shows much more 

green healthy lodgepole pine than the spectral library MTMF ratio image. The spectral 

library image confused grassy areas as young green lodgepole pine, while the grassy 

areas in the ROI image were suppressed. 

 

Figure 26.   MTMF ratio image of green healthy trees from September 2006 QuickBird data 
created by comparing image pixel spectra to regions of interest. Image size is 
5.952 km by 2.62 km. 
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Classification maps were created from the MTMF ratio images by determining a 

threshold, found by comparing the MF versus infeasibility ratio image histograms. Using 

interactive stretching to manipulate the brightness of the image ensures that pixels that 

remain bright are the most likely to be the target material. By examining the histograms, 

a common threshold was found between all the years of MTMF ratio data. To maintain 

consistency through the classification process, it is important to use the same threshold, 

otherwise the results will differ from year to year. The threshold used for the spectral 

library classified images was 0.052, for the data classified using the three ROIs the 

threshold was 0.444 (Figure 27). 

 

 

Figure 27.   Histograms for September 2006 QuickBird data. Histogram on the left is the 
spectral library classified histogram. Histogram on the right is the ROI classified 
histogram. 

Figure 28 shows an example of the MTMF ratio classification results for the 2006 

QuickBird data showing the best matches to the spectral library endmembers. Once the 

classification maps were created it was clear that the multispectral imagery did not have 

high enough spectral resolution to map all the endmembers present in the spectral library. 

Figure 28, the original MTMF ratio classification image, created by comparing the 

spectral library to image pixel spectra from September 2006, classified most of the scene 

as partial kill trees with red and green needles. 
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Figure 28.   Original MTMF ratio classification map from September 2006 QuickBird data. 
This image was created by comparing library spectra to image pixel spectra. Most 
of the terrain is classified as partial kill trees with red and green needles. Image 
size is 5.952 km by 2.62 km. 

4. Combined Classes 

Examining the spectral library, it was evident that there was not much difference 

between the spectrum for partial kill with red and green needles and the spectra for the 

three other classes of red beetle kill trees (Figure 29). Further examination of the spectral 

library found that the spectra for the three green classes  were not much different than the 

spectrum for green infected trees (Figure 30). 
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Figure 29.   Spectra for three classes red beetle kill trees and one class for partial kill trees 
with red and green needles. The differences between the spectra were not 
significant enough to map to multispectral imagery. 
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Figure 30.   Spectra for three classes of green healthy trees and for one class of green infected 

trees. The differences between the spectra were not significant enough to map to 
multispectral imagery. 

Recognizing that the spectral changes between these endmembers were subtle, the 

classes were merged in order to create more distinctly different classification maps. From 

the nine spectra used in the original classification attempt, three classes remained: green 

healthy, red kill, and gray kill. Merging the classes made visual analysis easier, and 

showed more change over time. Figure 31 shows the classification using the merged 

spectral library classes. Using the merged classes, most of the area was classified as 

either red or gray beetle kill. In September 2006 most of this area had already been 

significantly killed off. There are pockets of healthy trees, but at this point most of the 

trees were already decaying.   
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Figure 31.   MTMF ratio classification map comparing library spectra to image pixel spectra 
from September 2006 QuickBird data. Note that most of what was classified as 
partial kill trees with red and green needles is now classified as red beetle kill. 
Image size is 5.952 km by 2.62 km. 

B. MULTI-YEAR COMPARISONS FOR CHANGE DETECTION 

With the endmembers merged into three classes, classification maps for each year 

of data were created. In order to detect change between the images, visual comparisons 

were made, as well as mathematical comparisons via confusion matrices and plots of 

selected confusion matrix parameters.   

1. Visual Comparison of the MTMF Results over Time 

a. Comparison of Classification Maps Created from Library 
Spectra 

Figures 31, 32, 33, and 34 show the results of the classification maps 

created by comparing spectral library plots to image pixel spectra. Figure 31 (above) is 

the September 2006 QuickBird classification. The classified maps were all created using 

the same MTMF ratio threshold of 0.052 as described previously. The colors used for the 

map represent the different stages of health among the trees in the forest (green for 

healthy trees, red for red beetle kill trees, and brown for wholly dead trees). Looking at 

the classified maps it is clear that the trees in the forest are dying. With the exception of 

2009, which was a wet year following another wet year (Colorado Climate Center 
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Colorado State University, 2012), the progression of the maps shows expected patterns as 

beetle infestation spreads over time. Additionally, some green areas in the 2009 

classification image represent grassy areas that were not fully masked out of the whole 

image. Those areas are present in the other classification maps; however, the rainfall for 

the other years was not as high, resulting in dryer grass in the valleys (Colorado Climate 

Center Colorado State University, 2012). The amount of green goes down significantly 

from 2006 to 2011. The progression of mountain pine beetle is evident from the MTMF 

ratio classification results. Based on the life cycle of mountain pine beetle the results 

from 2006 to 2007 should show significantly more red beetle kill trees; through visual 

interpretation this seems to be the case. The green areas are not as abundant in the 2007 

classification; the grassy areas that appear in the 2006 classification were classified as red 

in 2007, which given the lack of precipitation during the water year should be the case. 

 

 
Figure 32.   MTMF ratio classification map from August 2007 IKONOS data created by 

matching spectral library plots to image pixel spectra. Image size is 5.952 km by 
2.62 km 
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Figure 33.   MTMF ratio classification map from July 2009 QuickBird data created by 

matching spectral library plots to image pixel spectra. Image size is 5.952 km by 
2.62 km 

 
Figure 34.   MTMF ratio classification map from June 2011 IKONOS data created by 

matching spectral library plots to image pixel spectra. Image size is 5.952 km by 
2.62 km 

Overall, the classification appears to be successful, showing less green 

healthy pine in June 2011 than in September 2006. The progression from green, to red, to 

brown is visually evident in this classification attempt. Remembering that in 2008 and 

2009 precipitation in the area was well over normal (Colorado Climate Center Colorado 
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State University, 2012), the classification of the 2009 data should also be considered 

successful, but not representative of the tree decline. 

Comparing the 2007 and 2009 classifications, the transition from red to 

brown is seen; additionally, comparing the 2009 and 2011 classifications the turn from 

green, to red, to brown is even clearer. The decline of the forest can be seen visually by 

comparing the results from the MTMF ratio classification maps that were created using 

the spectral library. 

Classification maps were also created using the library spectra for the 2011 

AVIRIS data (Figure 35). Visually the two maps from 2011 should match fairly closely; 

otherwise the classification results would have been incorrect. Comparing the two shows 

that the classified areas in both images matched relatively well, though the AVIRIS data 

show fewer red kill and more gray kill (brown). 

 

Figure 35.   MTMF ratio classification map created by matching library spectra to image pixel 
spectra from August 2011 AVIRIS data. Image size is 5.952 km by 2.62 km 

b.  Comparison of Classification Maps Created from Regions of 
Interest 

The results of the classified images mapped by comparing ROIs to image 

pixel spectra differed somewhat from the results created by using library spectra. Figures 

36, 37, 38, and 39 show the results of the MTMF ratio classification using ROIs. Three 
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regions of interest were used to create the classified images (green healthy, red kill, and 

gray kill). Figure 36 is the September 2006 classification created by using the three ROIs, 

followed by the August 2007, July 2009, and June 2011. Using a threshold of 0.444, 

found as described previously by stretching the histogram of the MTMF ratio images, 

produced the ROI classification results. 

 

Figure 36.   MTMF ratio classification map from September 2006 QuickBird data created by 
matching regions of interest to image pixel spectra. Image size is 5.952 km by 
2.62 km 

 
Figure 37.   MTMF ratio classification map from August 2007 IKONOS data created by 

matching regions of interest to image pixel spectra. Image size is 5.952 km by 
2.62 km. 
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Figure 38.   MTMF ratio classification map from July 2009 QuickBird data created by 

matching regions of interest to image pixel spectra. Image size is 5.952 km by 
2.62 km. 

 
Figure 39.   MTMF ratio classification map from June 2011 IKONOS data created by 

matching regions of interest to image pixel spectra. Image size is 5.952 km by 
2.62 km. 

In these images it is clear that much more of the forest was classified 

green healthy throughout the time series. Looking at these classifications, the progression 

from green, to red, to brown is easier to see. There are, however, some ambiguities, 

particularly in an apparent progression from grey kill to red kill between 2006 and 2007, 

then back to red kill in 2009. Unlike the results shown in Figure 33, much of the forest 
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was mapped as healthy using ROIs for classification. Over time, however, the forest does 

appear to be dying. Comparing the results from 2009 to 2011 the progression from red 

kill to gray kill is evident, with much more brown classified in the 2011 image. This 

should be the case, since it is known that pine beetles kill trees in one year (Wulder et al., 

2006). 

Classification maps were also created using the ROI spectra for the 2011 AVIRIS 

data (Figure 40). Again, the results from the two classification maps of 2011 should have 

shown similar results because they were captured in the same year. Comparing the two 

images in Figure 39 (2011 IKONOS) and Figure 40 (2011 AVIRIS) showed that this 

generally was the case, though the AVIRIS data show more gray kill than the IKONOS 

data. This may be partially explained by mapping of other dry vegetation in the AVIRIS 

data resulting from the fact that IKONOS data were acquired during June 2011 and the 

AVIRIS data during August 2011 near the end of the summer season. 

 

 
Figure 40.   MTMF ratio classification map created by matching ROIs to image pixel spectra 

from August 2011 AVIRIS. Image size is 5.952 km by 2.62 km. 

Visually comparing the results from both classification techniques, change 

over time is evident, and the data successfully map the progression of tree decay. The 

classified images mapped from the spectral library show much more red and gray beetle 

kill than the ROI classified images, but both techniques do show progression from 

healthy, to unhealthy, to dead. Visual comparison, however, only allow for superficial 
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comparison. Additional numerical comparisons were attempted to further judge the 

success of the mapping methods over time. 

2. Mathematical Comparison of the MTMF Results over Time 

Visual comparison of the data was one way to assess the results of the 

classification techniques over time. To better understand, and judge the success of the 

results, confusion matrices were created comparing the classified images and individual 

parameters from these were plotted to determine apparent trends over time.  

Confusion matrices are a common way to represent the classification accuracy of 

remotely sensed data (Congalton, 1991; Richards and Jia, 2005). Confusion matrices 

display classification information in an easily readable format of columns and rows that 

express “the number of sample units (i.e., pixels, clusters of pixels, or polygons) assigned 

to a particular category relative to the actual category as verified on the ground” 

(Congalton, 1991). In the confusion matrices created for this study the ground truth pixels 

are presented in the columns and the MTMF data are presented in the rows. The goal in 

using the confusion matrices in this research was to track changes in specific 

classification characteristics over time. This required comparison of individual confusion 

matrix elements across the datasets. 

a.  Confusion Matrices between Spectral Library Classification 
Maps 

One way to view the results is to look at the accuracy of the different 

categories in the confusion matrix (Table 2). The number of correctly classified pixels for 

each endmember is shown along the main diagonal (highlighted in yellow). Table 2 

shows that the AVIRIS spectral library classified image classified 12,200 pixels as green 

healthy, and the QuickBird spectral library classified image classified 7,543 pixels as 

green healthy. Between the two years however only 2,515 pixels matched. Based on the 

knowledge that green healthy trees are declining in the area this number should drop as 

the years progress. 
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Class AVIRIS 
Green 
Healthy 

AVIRIS Red 
Kill 

AVIRIS 
Gray Kill 

Total 

QuickBird 
Green 
Healthy 

2515 304 4724 7543 

QuickBird 
Red Kill 

7857 915 15263 24035 

QuickBird 
Gray Kill 

1828 606 5673 8107 

Total 12200 1825 25660 39685 

Table 2.   Confusion matrix of the AVIRIS spectral library classified image and 
September 2006 QuickBird spectral library classified image comparing 
classified pixels. The overall accuracy was 22.94 percent with a Kappa 
coefficient of 0.0141.   

Another way to assess the accuracy of the confusion matrix is to look at 

the Overall Accuracy and the Kappa coefficient.  “It is reasonable to expect some degree 

of agreement will occur by chance alone,” and should be removed from consideration 

(Monserud and Leemans, 1991). The overall accuracy is computed by dividing the total 

number of correct pixels by the total number of pixels in the error matrix (Congalton, 

19991). The Kappa coefficient helps measure how much agreement occurred between 

each the images being compared, it is equal to one for two maps with perfect agreement 

and close to zero when the maps agree approximately as much as would be expected due 

to chance (Monserud & Leemans, 1991). The overall accuracy between the September 

2006 classified image and the AVIRIS classified image was 22.94 percent and the Kappa 

coefficient was 0.0141, suggesting that there was very little agreement between the 2006 

QuickBird image and the 2011 AVIRIS image. If the classification results are accurate, 

the Kappa coefficient should approach one as the years progress between the 

classification maps. 

Errors of omission and commission are also ways to interpret the accuracy 

of the confusion matrix. Dividing the number of correctly identified pixels in a class by 
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the number of pixels in the same class “as derived from the reference data,” gives errors 

of omission (Congalton, 1991). Higher omission error represents less accurate 

classification. Omission error is also called producer’s accuracy. Producer’s accuracy is a 

measure of “how well a certain area can be classified,” based on the “probability of a 

reference pixel being correctly classified” (Congalton, 1991). The producer’s accuracy of 

Table 2 for green healthy trees was 20.61 percent, and the omission error was 79.39 

percent. Out of a possible 12,200 pixels classified as green healthy, only 2,515 pixels 

matched between the 2006 QuickBird data and the 2011 AVIRIS data; 9,685 pixels were 

classified as red or gray kill in the comparison between the 2006 QuickBird data and the 

2011 AVIRIS data.     

Commission error is determined by dividing the number of correctly 

classified pixels by the total number of pixels in each class (Congalton, 1991). Errors of 

commission are also called user’s accuracy. User’s accuracy represents the probability 

that a classified pixel “represents that category on the ground” (Congalton, 1991).    The 

user’s accuracy of green healthy trees in Table 2 was 33.34 percent, and the commission 

error was 66.66 percent.   

The producer’s and user’s accuracy for green healthy trees in Table 2 

indicate that there  were a fair number of matches between the 2006 QuickBird map and 

the 2011 AVIRIS map. But since it is known from the visual interpretation of the 

classification images that there was significant change between the two years (the number 

of green healthy trees has declined since 2006), these results are as expected. 

The confusion matrix comparing the August 2007 IKONOS spectral 

library classified image and the AVIRIS spectral library classified image (Table 3) 

showed a sharp decline in the number of correctly classified green healthy pixels and 

large increase in gray kill classified pixels. The overall accuracy of the comparison 

between the two maps was 29.1 percent with a Kappa coefficient of 0.0179. The 

producer’s accuracy for green healthy declined to 3.61 percent with only 533 pixels out 

of a possible 14,745 matching for that class. While the number of gray kill pixels 

correctly classified increased, the producer’s accuracy was low but not alarmingly so at 

39.58 percent.   
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Class AVIRIS 
Green 
Healthy 

AVIRIS Red 
Kill 

AVIRIS 
Gray Kill 

Total 

IKONOS 
Green 
Healthy 

533 67 935 1535 

IKONOS 
Red Kill 

9668 1108 17987 28763 

IKONOS 
Gray Kill 

4544 998 12394 17936 

Total 14745 2173 31316 48234 

Table 3.   Confusion matrix of AVIRIS spectral library classified image and August 
2007 IKONOS spectral library classified image comparing classified pixels.   
The overall accuracy was 29.1 percent with a Kappa coefficient of 0.0179. 

Table 4 shows the confusion matrix between the July 2009 QuickBird 

spectral library classified image and the 2011 AVIRIS spectral library classified image. 

Notice that the number of pixels classified as green healthy has increased, leading to 

more pixels matching between the AVIRIS and QuickBird maps. This was likely due to 

above average precipitation for the area over the prior two years, leading to healthier 

vegetation (particularly grass) in the surrounding areas. The overall accuracy of the 

confusion matrix in Table 4 was 36.8 percent, with a Kappa coefficient of 0.0682. 

Producer’s accuracies also dropped for both red and gray kill between 2009 and 2007. A 

number that was shockingly low in this confusion matrix was the user’s accuracy for red 

kill trees, at 4.64 percent. Suggesting that there was a little more than four and a half 

percent chance that red kill classified pixels on the 2009 QuickBird classification map 

were actually that class on the ground. 
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Class AVIRIS 
Green 
Healthy 

AVIRIS Red 
Kill 

AVIRIS 
Gray Kill 

Total 

QuickBird 
Green 
Healthy 

4560 466 7037 12063 

QuickBird 
Red Kill 

4609 652 8805 14066 

QuickBird 
Gray Kill 

2760 714 8989 12463 

Total 11929 1832 24831 38592 

Table 4.   Confusion matrix of AVIRIS spectral library classified image and July 2009 
QuickBird spectral library classified image comparing classified pixels.   
The overall accuracy was 36.8 percent with a Kappa coefficient of 0.0682. 

The last confusion matrix comparing spectral library classification maps 

was between the June 2011 IKONOS map and the 2011 AVIRIS map (Table 5). The 

number of matched green healthy pixels decreased from 2009, going from 4,560 to 1,968, 

and the number of matched gray kill classified pixels has increased, going from 8,989 to 

10,588. 

 

Class AVIRIS 
Green 
Healthy 

AVIRIS Red 
Kill 

AVIRIS 
Gray Kill 

Total 

IKONOS 
Green 
Healthy 

1968 218 3783 5969 

IKONOS 
Red Kill 

7516 973 13683 22172 

IKONOS 
Gray Kill 

4471 576 10588 15635 

Total 13955 1767 28054 43776 

Table 5.   Confusion matrix of AVIRIS spectral library classified image and June 
2011 IKONOS spectral library classified image comparing classified pixels.   
The overall accuracy was 30.91 percent with a Kappa coefficient of 0.0230. 
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The results from this confusion matrix show that gray kill classified pixels 

did increase from 2006, but not as much as expected. The overall accuracy was 30.91 

percent with a Kappa coefficient of 0.0230. The user’s accuracy for gray kill was fairly 

high at 67.72 percent, suggesting that almost 68 percent of the time a pixel classified as 

gray kill will actually represent that feature on the ground.   

Figures 41, 42, and 43 show plots of the number of matched pixels 

between the AVIRIS spectral library classified image and the four multispectral spectral 

library classified images. Notice that in 2009 the number of matched green healthy pixels 

is much higher than any of the other years (Figure 41). While the number of green 

healthy classified pixels that matched between the data sets fluctuates from 2006 to 2011, 

the overall number of matched pixels for the class went down in that time period from 

2,515 in 2006 to 1,968 in 2011. Based on the visual interpretation of the classification 

images and the known beetle kill cycle, this was the expected result; however, the total 

was expected to be much lower in 2011 than in 2006. 

 

 

Figure 41.   Plot showing the number of green healthy classified pixels matched between the 
AVIRIS spectral library classification map from 2011 and the classification maps 
from September 2006, August 2007, July 2009 and June 2011. 
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Figure 42 shows the plot of matched red pixels between the AVIRIS and 

spectral library classified image and the four multispectral spectral library classified 

images. Again, based on the image interpretation and know kill cycle, the number of 

matched red kill classified pixels should have increased every year from 2006 to 2011; 

however, because of the 2009 data, which showed much more green healthy growth due 

to above average rainfall (and insufficiently masked green grass pixels), that number 

decreased. Additionally, because of the speed with which the trees die and transition from 

red to gray, the number of red kill classified pixels should remain fairly uniform 

throughout the years. Overall the number of red kill classified pixels did increase from 

2006 to 2011, going from 915 in 2006 to 973 in 2011. A much bigger increase in this 

classification was expected, but the results did increase over time. 

 

 
Figure 42.   Plot showing the number of red kill classified pixels matched between the 

AVIRIS spectral library classification map from 2011 and the classification maps 
from September 2006, August 2007, July 2009 and June 2011. 

Figure 43 shows the plot of matched gray kill pixels from the AVIRIS 

spectral library classified image and the four multispectral spectral library classified 

images. The plot shows an increase in gray kill from 2006 to 2011, this was the expected 

result based on visual inspection of the classified images and the known kill cycle. The 
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number of gray kill classified pixels that matched between the AVIRIS classified image 

and the multispectral classified images went from 5,673 in 2006 to 10,588. 

 

 
Figure 43.   Plot showing the number of gray kill classified pixels matched between the 

AVIRIS spectral library classification map from 2011 and the classification maps 
from September 2006, August 2007, July 2009 and June 2011. 

b.  Confusion Matrices between Regions of Interest Classification 
Maps 

The results from comparing the ROI classification maps were much 

different than the comparisons between the spectral library classification maps; however, 

this was expected based on the visual comparisons of the classification results. Table 6 

shows the confusion matrix between the September 2006 ROI classification map and the 

2011 AVIRIS classification map. 
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Class AVIRIS 
Green 
Healthy 

AVIRIS Red 
Kill 

AVIRIS 
Gray Kill 

Total 

QuickBird 
Green 
Healthy 

7367 5403 4106 16876 

QuickBird 
Red Kill 

2781 4528 3197 10506 

QuickBird 
Gray Kill 

1075 4108 3113 8296 

Total 11223 14039 10416 35678 

Table 6.   Confusion matrix of AVIRIS regions of interest classified image and 
September 2006 QuickBird regions of interest classified image comparing 
classified pixels. The overall accuracy was 42.1 percent with a Kappa 
coefficient of 0.1320. 

Notice the number of green healthy classified pixels is significantly higher 

than either the red or gray kill classes. This was expected based on the knowledge that 

there were more green healthy trees in 2006 than red or gray kill trees. The producer’s 

accuracy for green healthy trees was 65.64 percent, which suggested a relatively high 

match between the AVIRIS and QuickBird region of interest. There were fewer matches 

for gray kill trees than red kill trees, which was expected based on what is known about 

mountain pine beetle life cycles. The overall accuracy for the confusion matrix was 

42.1 percent while the Kappa coefficient was 0.1320. 

Table 7 shows the confusion matrix between the 2007 IKONOS and 2011 

AVIRIS classification maps created from comparing regions of interest to image pixel 

spectra. The results from this comparison show a decrease in both green healthy and gray 

kill, but an increase in red kill correctly classified pixels. The results in Table 6 show the 

progression of mountain pine beetle over the course of one year. In September 2006 there 

were more green trees and fewer red trees, one year later the confusion matrix shows that 

green healthy trees have decreased and red kill trees have increased. The user’s accuracy 

for all three classes were mid-range,  from 36.05 percent for gray kill 
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classified pixels, to 44.66 percent for red kill classified pixels, to 41.35 percent for green 

healthy classified pixels, while the producer’s accuracies remained fairly close to the 

previous year’s data.   

 

Class AVIRIS 
Green 
Healthy 

AVIRIS Red 
Kill 

AVIRIS 
Gray Kill 

Total 

IKONOS 
Green 
Healthy 

6142 4875 3835 14582 

IKONOS 
Red Kill 

2947 5524 3897 12368 

IKONOS 
Gray Kill 

1424 3868 2983 8275 

Total 10513 14267 10715 35495 

Table 7.   Confusion matrix of AVIRIS regions of interest classified image and 
August 2007 IKONOS regions of interest classified image comparing 
classified pixels. The overall accuracy was 41.27 percent with a Kappa 
coefficient of 0.1177. 

The confusion matrix between the July 2009 and AVIRIS 2011 

classification maps created from comparing regions of interest to image pixel spectra 

(Table 8) shows what was expected, a decrease in green healthy trees and an increase in 

gray kill trees. The user’s and producer’s accuracies for all three classes held steady 

showing similar results between the 2009 data and the 2007 data.   
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Class AVIRIS 
Green 
Healthy 

AVIRIS Red 
Kill 

AVIRIS Gray 
Kill 

Total 

QuickBird 
Green 
Healthy 

5301 3641 2916 11858 

QuickBird 
Red Kill 

1371 4615 3484 9470 

QuickBird 
Gray Kill 

2442 4120 3067 9629 

Total 9114 12376 9467 30957 

Table 8.   Confusion matrix of AVIRIS regions of interest classified image and July 
2009 QuickBird regions of interest classified image comparing classified 
pixels. The overall accuracy of was 41.94 percent with a Kappa coefficient 
of 0.1332. 

The final confusion matrix comparing the regions of interest classification 

maps was between the June 2011 IKONOS and AVIRIS 2011 data. Table 9 shows 

decreasing green healthy and gray kill trees with increasing red kill trees. Producer’s and 

user’s accuracies were in line with what was observed in all the previous year’s data, 

suggesting that the classification results were consistent.   

 

Class AVIRIS 
Green 
Healthy 

AVIRIS Red 
Kill 

AVIRIS Gray 
Kill 

Total 

IKONOS 
Green 
Healthy 

5204 4823 3644 13671 

IKONOS Red 
Kill 

2022 4772 3481 10275 

IKONOS 
Gray Kill 

1583 3182 2641 7406 

Total 8809 12777 9766 31352 

Table 9.   Confusion matrix of AVIRIS regions of interest classified image and June 
2011 IKONOS regions of interest classified image comparing classified 
pixels. The overall accuracy was 40.24 percent with a Kappa coefficient of 
0.1086. 
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Figures 44, 45, and 46 show the plots for the number of matched pixels 

between the AVIRIS regions of interest classified image and the four multispectral 

regions of interest classified images. Figure 45 shows the number of matched pixels 

classified as green healthy. The number of green healthy classified pixels decreased from 

2006 to 2011, going from 7,367 to 5,204 over that period. 

 

 
Figure 44.   Plot showing the number of green healthy classified pixels matched between the 

AVIRIS regions of interest classification map from 2011 and the classification 
maps from September 2006, August 2007, July 2009 and June 2011. 

Figure 45 shows the number of matched red kill classified pixels between 

the AVIRIS regions of interest classified image and the four multispectral classified 

images. The plot has a similar shape to the other red kill classified image, showing an 

overall increase in red kill classified trees, but not again not as much as was expected. 
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Figure 45.   Plot showing the number of red kill classified pixels matched between the 

AVIRIS regions of interest classification map from 2011 and the classification 
maps from September 2006, August 2007, July 2009 and June 2011. 

Figure 46 shows the number of matched gray kill classified pixels between 

the AVIRIS regions of interest classified image and the four multispectral classified 

images. This plot looked nothing like expected, showing a sharp drop off in the number 

of matched gray kill classified pixels between the AVIRIS and multispectral regions of 

interest classification maps.   

 
Figure 46.   Plot showing the number of gray kill classified pixels matched between the 

AVIRIS regions of interest classification map from 2011 and the classification 
maps from September 2006, August 2007, July 2009 and June 2011. 
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Figures 47, 48, and 49 show the number of total classified pixels from the 

classification maps created from the spectral library. These plots were not significantly 

different from the plots showing matched pixels between the HSI and the MSI datasets.   

Figure 47 shows that there were fewer total classified green pixels in 2007 

than in 2006; however the total increased in 2009 before ultimately dropping in 2011 to 

below 2006 levels. The increase in green healthy classified pixels in 2009 can be 

attributed to the wetness of the year. While the decrease in classified pixels is not large, 

going from 44,638 in 2006 to 41,649 in 2011, the downward trend was what was 

expected based on the visual classification comparisons and known beetle life cycle. 

 

 

Figure 47.   Plot showing the total number of green healthy classified pixels from the spectral 
library classification method from September 2006, August 2007, July 2009 and 
June 2011. 

Figure 48 shows the total red kill classified pixels from the spectral library 

classification map. The plot indicates that the number of red kill classified pixels 

decreased in 2009, which is consistent with what is shown in the classification maps and 

confusion matrices. As noted previously, the shape of the plot for red kill trees should 

remain fairly uniform due to the transition speed from red kill to gray kill.  
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Figure 48.   Plot showing the total number of red kill classified pixels from the spectral library 
classification method from September 2006, August 2007, July 2009 and June 
2011. 

The total number of gray kill classified pixels did show a large increase 

from 2006 to 2011, as was expected based on the known beetle life cycle and associated 

forest decline. Figure 49 shows that the increase in total pixels classified as gray kill was 

significant. Progressing from 2006 to 2011 the number of gray kill classified went from 

54,877 to 145,255.   
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Figure 49.   Plot showing the total number of gray kill classified pixels from the spectral 
library classification method from September 2006, August 2007, July 2009 and 
June 2011. 

Figures 50, 51, and 52 show the number of total classified pixels from the 

classification maps created from the three regions of interest. It was clear after examining 

these plots that the trends appear anomalous. 

Figure 50 shows that the number of green healthy classified pixels 

decreased in 2009 and then increased in 2011. The number of green classified pixels was 

expected to decrease from 2006 to 2011, but based on the spectral library classified 

images and the results seen, the number of green healthy classified pixels was expected to 

increase in 2009 and decrease again in 2011. 
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Figure 50.   Plot showing the total number of green healthy classified pixels from the regions 
of interest classification method from September 2006, August 2007, July 2009 
and June 2011. 

Figure 51 shows that the number of red kill classified pixels remained 

fairly level from 2006 to 2011. The trend seen in the red kill trees is again what was 

expected. The results for red classified pixels should be level throughout the years 

because of the fast transition from red kill to gray kill. 

 

Figure 51.   Plot showing the total number of red kill classified pixels from the regions of 
interest classification method from September 2006, August 2007, July 2009 and 
June 2011. 
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Finally, Figure 52 shows a decline in the total number of gray kill 

classified pixels. This was unexpected, based on the results from the spectral library 

classified images and what is known about the forest.   

 

 

Figure 52.   Plot showing the total number of gray kill classified pixels from the regions of 
interest classification method from September 2006, August 2007, July 2009 and 
June 2011. 

Overall the classification maps produced from regions of interest did not 

seem to show the same quality of results as those from the library spectra. One reason 

could be the way the confusion matrices were created. Using the HSI classification map 

as a baseline to compare the results from the MSI classification maps might have caused 

those problems. The ROIs were selected from the AVIRIS data, which had 8.9 meter 

pixels, larger than the 4 meter pixels of the multispectral data. The ROIs were then 

overlaid on the MSI imagery to create the classification maps; there may have been some 

ambiguity between the spectral signatures of the AVIRIS pixels and the spectral 

signatures of the MSI pixels. This seems likely, given the unexpected results from the 

ROI produced classification maps. 
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c. Error Sources 

There are a number of error sources inherent in the analysis of this time 

series of multispectral data, starting with the difference between IKONOS and QuickBird 

multispectral data. Because the IKONOS data had larger pixels the QuickBird data were 

spatially resized, which may have changed the reflectance characteristics for this data 

(though nearest neighbor resampling was used to try to minimize this effect). Similarly, 

the difference in viewing geometry between IKONOS and QuickBird may have also 

contributed to the inconsistent results. All data need to be radiometrically corrected, and 

atmospherically corrected to examine spectral characteristics of a scene. To 

radiometrically calibrate the IKONOS and QuickBird data the processing methods were 

different, using different factors to compute the radiance values. This processing may 

have caused inconsistencies between the radiance data, as well as the atmospherically 

corrected results. Comparing the AVIRIS, IKONOS, and QuickBird data also may have 

introduced errors. The AVIRIS pixels were more than twice the size of the IKONOS and 

down sampled QuickBird pixels. Because the pixels from the AVIRIS data were so much 

larger, this may have led to inconsistencies comparing to the MSI data. 

Errors were also potentially caused by the time of year each image was 

collected. While all the data were captured during the summer, the spectral response can 

change significantly from month to month. Because these data were not collected during 

the same month for each year, reflectance values had potential for inconsistency. For 

example, data from June, a colder month with some possible snow cover, would likely be 

spectrally different from data collected during July and August, warmer months with 

variable rainfall, and September, another cold month which is also near the beginning of 

autumn; all because of changes in vegetation morphology and growth or drying stage. 

Additionally as the months progressed, illumination of the site changed. Had the data 

been collected during the same month, results probably would have been different. Using 

data collected during the same month for each year also would have limited the 

variability of the spectral response of the features studied. The lodgepole pine trees 

examined for this study were rapidly changing. Changes occur from month to month, and 
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due to the variability of the time of year the data were collected, changes in the 

reflectance characteristics may have been dramatic. 

Additional errors may have been caused by the short time span of the data. 

With only four years of MSI data and only one year of coincident HSI data, it was 

difficult to gauge the effect of mountain pine beetle. The 2009 MSI collect had a large 

effect on data trends, significantly altering the results of the study. 

Finally, there may have been classification errors throughout. Because the 

MSI data only had four bands, the degree of match between the spectral library and the 

spectra from those data was reduced relative to what could be achieved with 

hyperspectral data. Most of the change in vegetation is seen at the chlorophyll absorption 

band; however, due to the limited spectral resolution of the MSI data these changes are 

not as apparent. This may have caused many pixels to go unclassified, thus leading to the 

poorer than hoped for results.  

All of these sources of error combined made this a difficult study and 

minimization of some of these (not possible within the scope of this study) would 

probably have dramatically changed the results of this time series analysis. 
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V. CONCLUSIONS 

The goal of this study was to map the decay of lodgepole pine trees due to 

mountain pine beetle infestation near Grand Lake, Colorado. Multispectral data spanning 

a five-year period from 2006 to 2011 were used to assess the progression from live, green 

trees to dead, gray-brown trees. IKONOS data from 2011 were corrected to reflectance 

and validated against an AVIRIS hyperspectral dataset, also collected during 2011. These 

data were used along with additional reflectance-corrected multispectral datasets 

(IKONOS from 2007 and QuickBird from 2006 and 2009) to create vegetation 

classification maps using both library spectra and regions of interest. Visual assessment 

of the image time series and classification results indicated a general progression from 

the live trees to the dead trees over the five-year period. Problems with data 

normalization over the time period in question impacted classification efforts, however, 

and thus lead to some ambiguous results. These observations were also confirmed by 

quantitative comparison of the classification images. Though not as successful as 

originally hoped, this research demonstrated the potential for mapping the progression of 

mountain pine beetle and decay of lodgepole pine trees over time using spectral remote 

sensing. 

With better ground truth data for all the years corresponding to the multispectral 

data, more accurate classification of the forest could have been possible. Additionally, 

with matching hyperspectral and multispectral datasets for all the years, spectral 

signatures would likely have matched better between the images, allowing for more 

accurate classification. The main problem encountered in this study was the lack of 

cohesion between the multispectral data sets. The reflectance values were much different 

between each of the sensors (IKONOS, QuickBird), causing quite a bit of confusion in 

the classifications. It is also important to note that only five years of data were used for 

this study. With such a small sample, and particularly with the already advanced stage of 

the infestation, it was difficult to accurately map the progression of mountain pine beetle 

damage over time. When such a small sample size is used, one year’s data can 

significantly skew the final results. In this case, data from 2009, an anomalously wet 
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year, proved to have a very large effect on classification comparisons. With data from 

every year of the last decade or longer, the classifications and subsequent comparisons 

would likely have shown the progression of mountain pine beetle more convincingly and 

accurately. 

Between the two methods of classification the spectral library classification 

method seemed to be more accurate. Knowing that the forest has degraded over time, the 

results from the spectral library classification were more conclusive. The ROI 

classification method did show change over time of the forest; however, the results did 

not appear to be as accurate as the spectral library classified images. While the confusion 

matrices showed greater accuracy between the ROI classified MSI and HSI images, the 

number of pixels classified as gray kill over time went down, which is inconsistent with 

what is known of the area.   

Plots of both total pixel and matched pixel count illustrated the degradation of the 

forest over time. Additionally, the visual inspection of the classification maps seems to 

support these findings and results match the known progression of pine beetle damage 

from healthy green trees, through the red kill stage, to the gray kill stage over time. 
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